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ABSTRACT
We describe the development of a 3D Monte-Carlo model to study hot-electron transport in ionized or partially ionized targets, considering
regimes typical of inertial confinement fusion. Electron collisions are modeled using a mixed simulation algorithm that considers both soft
and hard scattering phenomena. Soft collisions are modeled according to multiple-scattering theories, i.e., considering the global effects of
the scattering centers on the primary particle. Hard collisions are simulated by considering a two-body interaction between an electron and
a plasma particle. Appropriate differential cross sections are adopted to correctly model scattering in ionized or partially ionized targets. In
particular, an analytical form of the differential cross section that describes a collision between an electron and the nucleus of a partially ionized
atom in a plasma is proposed. The loss of energy is treated according to the continuous slowing down approximation in a plasma stopping
power theory. Validation against Geant4 is presented. The code will be implemented as a module in 3D hydrodynamic codes, providing a
basis for the development of robust shock ignition schemes and allowing more precise interpretations of current experiments in planar or
spherical geometries.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0103631

I. INTRODUCTION

In the direct drive1,2 and shock ignition (SI)3–5 approaches to
inertial confinement fusion (ICF), laser intensities up to 1015–1016

W/cm2 are envisaged to bring the hotspot to the required condi-
tions. In the standard direct drive scheme, the laser intensity rises
following an adiabat shaping,6 whereas in SI, a high-intensity spike
launches a strong converging shock after the compression phase.
Because of the high intensities, when the laser light couples with the
plasma created by the compression beams, several processes respon-
sible for the generation of suprathermal electrons, so-called “hot
electrons,” take place. Of particular note among these processes are
stimulated Raman scattering (SRS) and two-plasmon decay (TPD),
which excite electron plasma waves (EPWs) around nc/4.7–9 Reso-
nant absorption (RAB) of laser light can also excite EPWs around
the critical density.

In the last decade, several numerical and experimental inves-
tigations have been conducted with the aim of understanding the

influence of hot electrons on implosion performance, considering
both the standard direct drive and the SI approaches to ICF.10–14

These studies agree in showing that too-energetic electrons can
propagate through the capsule and preheat the DT shell, changing
the hydrodynamic conditions of the hotspot and jeopardizing igni-
tion. While in the standard direct drive approach, the presence of
hot electrons is deleterious, in SI, their generation is driven by the
high-intensity laser spike after the compression phase. Hence, if the
target areal density is sufficiently high and if hot electrons have low
kinetic energy, they are stopped in the outer part of the shell and
the preheating effect is limited. It is therefore important to develop
numerical tools that enable accurate evaluation of the effects of hot
electrons on implosion schemes.

Currently, with the increased computational power that has
become available, 3D hydrodynamic codes are being developed and,
with them, has arisen the need to include 3D hot electron transport
modules. We report here on a 3D Monte-Carlo (MC) method to
simulate hot-electron propagation in ionized fusion targets, with the

Matter Radiat. Extremes 7, 065902 (2022); doi: 10.1063/5.0103631 7, 065902-1

© Author(s) 2022

https://scitation.org/journal/mre
https://doi.org/10.1063/5.0103631
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0103631
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0103631&domain=pdf&date_stamp=2022-November-4
https://doi.org/10.1063/5.0103631
https://orcid.org/0000-0002-1477-669X
https://orcid.org/0000-0003-4913-1653
mailto:alessandro.tentori@u-bordeaux.fr
mailto:alessandro.tentori@mail.polimi.it
https://doi.org/10.1063/5.0103631


Matter and
Radiation at Extremes RESEARCH ARTICLE scitation.org/journal/mre

aim of future implementation in hydrodynamic codes. We consider
a “mixed” algorithm15–17 in which “soft” collisions are described
according to multiple-scattering theories, while “hard” collisions are
simulated individually, i.e., by considering two-body interaction.
These algorithms are implemented in widely used MC codes such
as Geant418 and Penelope.17,19,20 Once it has been implemented in
hydrodynamic codes, this model will be particularly useful to inves-
tigate the role of hot electrons in ICF, allowing the development of
robust implosion schemes. Furthermore, it will be used to interpret
experiments aimed at investigating the role and characteristics of hot
electrons, without relying on “cold” MC codes. It should be noticed
that an analysis of recent experiments aimed at characterizing hot
electrons was based on cold MC methods (Geant4), which do not
account for the plasma state and the hydrodynamic evolution of the
target.21–24

The work is divided into two papers. In the present paper, we
report on the physics and implementation of the plasma MC code,
while in Paper II,25 we present two applications: the study of hot
electron propagation in laser-irradiated planar targets and a first
numerical investigation of hot-electron-induced preheating consid-
ering a typical SI implosion scheme. In particular, in Paper II, we
show that a target in the plasma state stops and absorbs electrons
more effectively compared with the cold case (i.e., an unablated,
nonionized target under standard conditions). We will show that
this is related to differences in scattering mechanisms. Notably, not
only does the plasma stopping power exhibit greater values com-
pared with the cold case, but also the scattering on plasma nuclei is
enhanced because of the larger nuclear screening lengths that char-
acterize the plasma state. Furthermore, in Paper II, we will discuss
the dominant role of electron–nuclei collisions in determining the
diffusion of the electron beam and the importance of hard collisions,
which should not be neglected.

The structure of this first part is as follows. In Sec. II, we give
a general picture of MC methods, introducing the physical quanti-
ties needed to construct the algorithm. In Sec. III, we give a list of
differential cross sections (DCSs) that model the scattering between
hot electrons and plasma particles. Since atoms in this regime can
be characterized by partial ionization, we propose an analytical form
of DCS that models the elastic scattering between an electron and
a nucleus screened by its residual electronic structure and by other
plasma particles. In Sec. IV, we show how these DCSs are used
to simulate hot-electron collisions, and in Sec. V, we describe the
plasma stopping power theory. In Sec. VI, we describe the detailed
procedure used to implement the MC method. In particular, we
present an algorithm to compute the collision distance for materials
in which strong density gradients are present (as a laser-irradiated
target). Finally, in Sec. VII, we present a benchmark of the code
against Geant4.

II. MONTE–CARLO METHODS: A GENERAL PICTURE
MC simulations are accurate ways to solve the problem of par-

ticle transport in matter. In the literature, two possible approaches
are suggested: the detailed and the condensed algorithms.17,26 In
the detailed method, all the collisions experienced by a particle are
simulated. The particle history is composed of a succession of
connected straight segments of free flight between each collision.

Changes in direction are sampled from scattering cross sections that
account for the physical properties of the scattering centers, and the
simulated tracks can be considered as the real particle tracks. How-
ever, because of the high computational power required, detailed
simulations are feasible only for a limited number of collisions, i.e.,
for low-energy electrons or for thin target geometries. Because of
this limitation, condensed MC methods were formulated, allowing
a reduction in computational time. Here, a particle moves through
distances (steps) greater than its mean free path, and the effects
of the scattering centers on the particle direction are computed
according to a multiple-scattering theory. The accuracy of these
algorithms depends on the approximation and on the hypothesis of
the multiple-scattering theory that are used.

Another possibility suggested in the literature is the so-called
mixed algorithm.16,17 In this approach, “soft” collisions are described
according to multiple-scattering theories, while “hard” collisions
are simulated individually, i.e., considering a two-body interaction.
Here, we develop a mixed simulation algorithm aimed at simulating
hot-electron transport in laser-irradiated targets, considering the
regimes of interest for ICF. In particular, the algorithm presented
follows closely the implementation of the Penelope MC code,17,20

although modifications are required because of the different nature
of the problem. Penelope simulates the propagation of electrons
in standard nonionized materials, whereas here we are considering
laser-irradiated targets. Under these conditions, a hot electron
propagates in an ionized medium, scattering with other free plasma
electrons and with completely or partially ionized atoms. In particu-
lar, collisions with other electrons (free or bound) are accompanied
by energy transfer, while collisions with nuclei are responsible for
changes in direction (because of the difference in the masses of
the interacting particles). In this work, the beam diffusion and the
electron slowing down are treated separately. As reported in Sec. V,
appropriate stopping power formulas are adopted to model the elec-
tron energy losses due to collisions with free and bound electrons.
Energy losses due to excitation of plasma waves are also taken
into account. Considering the typical uncertainties that characterize
laser–plasma experiments, the continuous slowing down approx-
imation (CSDA) is considered sufficiently accurate. The changes
in direction of the hot electrons direction are simulated taking
account of diffusion on plasma nuclei and on free electrons, accord-
ing to appropriate DCSs (see Sec. III). Changes in direction due to
collisions with bound electrons are not simulated. As shown in Paper
II,25 beam diffusion is governed mainly by scattering on plasma
nuclei, while scattering with other electrons plays a minor role. As
a consequence, the fact that we do not simulate the changes in direc-
tion due to scattering with bound electrons does not introduce a
significant error in the model.

A final important point is that a laser-irradiated target exhibits
strong density gradients, which means that the algorithms used
in cold MC methods to compute the collision distances are not
adequate. For this purpose, we have developed an algorithm to
calculate the collision distances in materials characterized by a
nonconstant density.

In the code, we also implemented a “cold module.” When the
material temperature goes to zero, electrons collide with nonion-
ized atoms. Appropriate DCSs and stopping power formulas are
implemented to describe this condition. This will make it easy for
us to benchmark the code against cold MC codes like Geant4.
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III. CROSS SECTIONS
In this section, we give a list of DCSs that model the scattering

undergone by an electron propagating in a plasma. In particular,
elastic scattering with atomic nuclei or with other free electrons
and inelastic scattering with the electronic structure of an atom are
the processes responsible for the modification of electron direction
and energy loss. As mentioned in Sec. II, changes in electron direc-
tion are simulated taking account of collisions on plasma nuclei and
free electrons, while collisions with bound electrons are neglected.
The DCSs considered in our model are the Møller DCS to model
collisions between a hot electron and a free plasma electron, the
Dalitz DCS to model elastic collisions between a hot electron and
a nucleus screened by plasma particles, and a DCS is proposed to
model the elastic collision between the hot electron and a nucleus
screened by its residual electronic structure and by other plasma
particles. The Wentzel DCS is used to model the interaction between
an electron and a nucleus screened by its complete electronic
structure.

A. Electron–electron scattering
The scattering between a hot electron and plasma electrons can

be modeled considering the Møller cross-section.27,28 This formula
takes account the quantum nature of the interacting particles, but
it neglects the motion of the target electron. In the center-of-mass
reference frame, the cross section is written as

dσ
dΩ∗ ee

= ( r0

γβ2 )
2

2(γ + 1)[ 4
sin4 θ∗

− 3
sin2 θ∗

+ (γ − 1)2

4γ2 (1 + 4
sin2 θ∗

)]. (1)

Here, r0 = e2/m0c2 is the classical electron radius, θ∗ is the polar
scattering angle in the center-of-mass frame, β = v/c is the electron
velocity normalized to the speed of light, and γ = (1 − β2)−1/2

is
the relativistic gamma factor. The DCS in the laboratory frame is
written as29

dσ
dΩ ee

= 4( r0

γβ2 )
2

cos θ{ 1
sin4 θ

+ (γ + 1)2

4 cos4 θ

+ [(γ2 − 1)/γ]2
[(γ − 1)sin2 θ + 2]2 −

(2γ − 1)(γ + 1)
2γ2 sin2 θ cos2 θ

}, (2)

where θ is the polar scattering angle in the laboratory reference
frame.

B. Electron–nucleus elastic scattering
In this subsection, we present the analytical forms of the DCS

describing the elastic interaction between a hot electron and a
nucleus. We consider, in particular, three different cases. The first
is the collision between the electron and a nucleus that is screened
by its complete electronic structure. We are thus considering a
cold nonionized material. In the second case, we consider partial
ionization, i.e., an elastic collision between the electron and a nucleus
screened by its residual electronic structure and by other plasma

particles. In the third case we present the DCS describing the
collision between the electron and a nucleus screened by other
plasma particles. We are thus considering atoms that are completely
ionized.

1. Nonionized case
As mentioned in Sec. II, in the code, we take into account the

possibility for the electron to propagate in “cold” materials, i.e., non-
ionized materials. Notably, this happens when T → 0 and the degree
of ionization drops to zero. The ability to simulate the propagation
of hot electrons in cold materials will make it easy to benchmark
the code against existing and widely used MC codes like Geant4 and
Penelope. The DCS describing the collision between an electron and
a nucleus screened by its electronic structure is the Wentzel cross
section:30

dσ
dΩ
= e4

4p2v2
Z2

[sin2(θ/2) + B]2 . (3)

This formula is commonly used in cold MC methods.17,31 The
screening factor due to the electronic structure is modeled by the
factor B. This factor is given by

B = 1
4
( h̵

p
)

2

R−2. (4)

Here, R is the characteristic length of screening, which is derived
considering the atomic structure described within the framework of
Thomas–Fermi (TF) theory:32,33

R = 0.885Z−1/3a0, (5)

where Z is the atomic number and a0 is the Bohr radius:

a0 =
h̵

mecα
= 5.29 × 10−9 cm, α = 1

137
. (6)

2. Partial ionization
In the ICF regime, the atoms of which the targets are composed

can be characterized as being partial ionized. Thus, hot electrons
scatter with nuclei that are screened by other plasma particles
and by their residual electronic structure. This condition has been
addressed in some unpublished theses,34–36 in which the authors
have proposed an analytical form for the screening distance as a
function of the ionization state of the element. Here, we adopt
another approach, deriving an analytical DCS that describes this
phenomenon.

To model the interaction between an electron and the nucleus
of a partially ionized atom, we consider a potential V(r) of the
form37

V(r) = e2

r
(Zbe−r/R + Z∗e−r/D), (7)

where Zb is the number of bound electrons and Z∗ is the num-
ber of free electrons per atom. If the atom has atomic number Z,
then Z∗ = Z − Zb. In Eq. (7), R and D represent the characteristic
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distances at which the screenings due to bound electrons and plasma
particles are effective, respectively. In particular, R is given by Eq. (5)
with Z replaced by Zb, while the screening due to plasma charges
is modeled considering the maximum of the Debye length and the
ion sphere radius, i.e., D = max{λD, ri}. This choice is driven by the
fact that the plasma generated by the laser interaction in the solid
target is nonideal, being characterized by high density, partial ion-
ization, and strong Coulomb interactions. Under these conditions,
the Debye sphere contains, on average, less than one ion, and the
statistical treatment of the equations on which the Debye theory is
based cannot be justified. In this case, the screening effect is due to a
few neighboring ions that place themselves around a given charge,
and the literature suggests that the screening length be taken as
equal to the “ion sphere radius” (i.e., the average distance between
ions)38–42

ri = (
4
3

πni)
−1/3

, (8)

where ni is the ion density.
To better understand the model, we study the behavior of the

potential (7) as a function of r:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V(r) ≃ Ze2

r
, r → 0,

V(r) ≃ e2

r
(Zbe−r/R + Z∗), 0 < r < R,

V(r) ≃ Z∗e2

r
e−r/D, R≪ r ≤ D,

V(r) ≃ 0, r →∞.

(9)

For r → 0, i.e., within the closest range of the nucleus, the potential
assumes the form of a Coulomb potential for a charge Z in vacuum.
This is as expected, since in the proximity of the nucleus, plasma
particles or bound electrons do not screen the nuclear charge. For
0 < r < R, the potential is given by the sum of the potential of a Z∗

charge plus the potential of a screened Zb charge. Here, the screening
effect is due only to bound electrons. The approximation introduced
by the model is mainly contained in this region, since the electron
should feel a potential generated by a charge Z screened by bound
electrons. For R≪ r ≤ D, the electron moves outside the screening
sphere formed by bound electrons, and it actually feels the poten-
tial of a “macroparticle” of charge Z∗ (the positively charged nucleus
minus the charge of bound electrons). This macroparticle is screened
by the presence of the plasma, and this is modeled by the exponen-
tial e−r/D. For r →∞, the plasma charges screen the ion potential
completely, and the value of V(r) approaches 0. From Eq. (7),
according to perturbation theory in the first Born approximation,33

it is possible to derive the following DCS:

dσ
dΩ
= e4

4p2v2 {
Z∗2

[sin2(θ/2) + F]2 +
Z2

b
[sin2(θ/2) + B]2

+ 2ZbZ∗

[sin2(θ/2) + F][sin2(θ/2) + B]}. (10)

Here, p and v are the momentum and velocity of the incident
electron and θ is the polar scattering angle in the laboratory reference

frame. F and B are two coefficients describing the screening effects
due to plasma particles and bound electrons, respectively. B is given
by Eq. (4), while F is given by

F = 1
4
( h̵

p
)

2

(max{λD, ri}−2). (11)

In the case in which θ → 0, i.e., for collisions at large impact para-
meter, Eq. (10) can be written in a more compact form, as presented
in Ref. 43 for the case of nonionized material:

dσ
dΩ
= 4e4

p2v2

⎡⎢⎢⎢⎢⎣

Z2
b

(θ2 + θ2
b)2 +

Z∗
2

(θ2 + θ2
f )2 +

2ZbZ∗

(θ2 + θ2
b)(θ2 + θ2

f )

⎤⎥⎥⎥⎥⎦
, (12)

where θ2
b = 4B and θ2

f = 4F. From this equation, it is possible
to understand the importance of the screening terms (θb, f ) in
collisions at large impact parameters.

In the case of a large scattering angle, the screening terms
play a minor role. Since B≪ 1 and F ≪ 1, in this case, the cross
section (10) reduces to the Rutherford cross section:

dσ
dΩ
= e4

p2v2
Z2

4 sin4 θ
. (13)

Equation (10) represents the DCS describing the elastic collision
between an electron and a partially ionized atom in a plasma.
Regarding its regime of validity, this equation is derived under
the nonrelativistic assumption on the basis of the first Born
approximation

Z
137β

≪ 1. (14)

Considering the fact that hot electrons in ICF have mean kinetic
energies of the order of tens of keV,44–47 and targets are usually
composed by low-Z materials (CH ablators and DT shells), the DCS
(10) is adequate for our purposes.

3. Complete ionization
As already mentioned, in ICF and SI, the generation of hot

electrons happens after the compression laser pulses. These pulses
have duration and intensity sufficient to completely ionize part of
the atoms in the capsule. Thus, hot electrons will interact with
completely ionized atoms screened by plasma charges. This condi-
tion has been already considered in the literature, in particular to
model the propagation of electrons in the fast ignition regime (i.e.,
electrons with energy of the order of MeV).29 A suitable DCS that
describes the electron–nucleus interaction considering the screening
effects is the Dalitz DCS:48–50

dσ
dΩ
= (Zr0

γβ2 )
2 1

4 sin4(θ/2)(1 − β2 sin2 θ
2
)[ Λ2 sin2(θ/2)

1 +Λ2 sin2(θ/2)]
2

.

(15)

Here, Z is the atomic number of the scattering center, γ and β are
the electron relativistic kinematic quantities, and θ is the scattering
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angle in the laboratory reference frame. In this formula, it is possible
to recognize a “Mott” part multiplied by the screening term

[ Λ2 sin2(θ/2)
1 +Λ2 sin2(θ/2)]

2

, where Λ = 2
p
h̵

max{λD, ri}. (16)

The nonrelativistic limit of the formula (15) corresponds to Eq. (10)
in which Zb → 0. Similarly to what was shown for Eq. (10), the
screening term plays an important role for small-angle collisions
(high impact parameters), while in the case of hard collisions, the
cross section reduces to the Rutherford form.

This DCS is derived according to the second Born approxima-
tion (Z/137β)2 ≪ 1 and it is valid in the relativistic regime.

IV. SCATTERING THEORIES: SCATTERING
POLAR ANGLE DISTRIBUTION FOR SOFT
AND HARD COLLISIONS

The algorithm proposed here follows closely the method used
in the Penelope MC code,17,20 even if some modifications are
required because of the different nature of the problem. As in
Penelope, we have implemented a mixed algorithm in which soft
and hard collisions are simulated separately. We identify as soft
collisions those scattering events for which the polar scattering angle
is less than a predetermined value θs, which is around 10○17 (the
exact value of θs does not have a large impact on the final results
of the simulation). Evidently, hard collisions are such events with
a scattering angle greater than θs. Soft scattering events are mod-
eled according to the Goudsmit and Saunderson theory,51–53 while
hard collisions are simulated considering a two-body interaction
according to the DCSs listed in Sec. III.

A. Multiple scattering theory
A multiple-scattering theory evaluates the global effect of the

collisions that occur in a track segment of a given length traveled
by the electron. An accurate simulation procedure is based on
the Goudsmit–Saunderson multiple-scattering theory.51,52 The most
important result obtained from this theory is the fact that in the
soft scattering angle approximation, the soft collision polar angle can
be sampled from the distribution FGS(θ, Δs), which does not differ
significantly from the Gaussian distribution with variance Δs/λ(s)1 :17

FGS(θ, Δs) = 1
2π

λ(s)1
Δs

exp
⎛
⎝

Δs
8λ(s)1

⎞
⎠

exp
⎛
⎝
−λ(s)1

2Δs
θ2⎞
⎠

, (17)

where λ(s)1 is the small-angle first transport mean free path and Δs
is the path length traveled by the particle. The small-angle first
transport mean free path reads

λ(s)−1
1 = 2πN∫

θs

θmin

dσ(θ)
dΩ

(1 − cos θ) sin θ dθ, (18)

where N is the density of the scattering centers characterized by the
DCS dσ(θ)/dΩ (for simplicity, in this equation, we are considering

a single-species medium). In the case of a multispecies medium like
a plasma, the additivity rule should be applied to compute the mean
free path:

1
λ
=∑

i

1
λi

. (19)

In this equation, the sum is over all the species of which the plasma is
composed. Let us remark that λ(s)1 should be computed considering
the small scattering approximation. Thus, the upper bound in the
integral (18) is set to θs ≃ 10○. The lower bound θmin is equal to 0 in
the case of collision with ions, or equal to θmin = h/p in the case of
electron–electron collisions.43,54

This analytical distribution provides a simple tool to generate
the angular deflection caused by soft collisions experienced by the
hot electrons.

B. Hard collisions
Hard collisions, i.e., collisions that cause the primary particle

to deviate with a polar scattering angle greater than θs, are simu-
lated considering a two-body interaction. In particular, the primary
electron can scatter with other free plasma electrons or nuclei. The
probability distribution for the polar scattering angle reads17,20

p(h)(θh) = cn
dσ(θ)

dΩ
sin θ H(θ − θs), (20)

where cn is a normalization coefficient and H(θ − θs) is the Heav-
iside function, since we want to exclude small scattering, already
simulated according to the Goudsmit–Saunderson theory. Here,
dσ(θ)/dΩ is the DCS related to the scattering center (free plasma
electrons or nucleus; see Sec. III).

V. STOPPING POWER
In recent decades, with the increasing interest in nuclear fusion,

particular attention has been devoted to study of the energy loss of
electrons in plasmas.54–57 As already mentioned in the preceding
sections, a hot electron that propagates in a plasma undergoes
several collisions with other electrons (free or bound) or with nuclei.
Collisions with free plasma electrons or with the remaining elec-
tronic structure of an atom are accompanied by energy transfer.
Collisions with nuclei cause mostly changes in electron direction,
while the energy transfer is limited because of the greater mass
of the nucleus. Another source of energy loss is the excitation of
plasma waves. In this case, the electric field generated by a hot elec-
tron makes the plasma electrons oscillate, leading to energy transfer
between the hot electron and the medium.

In this section, we describe the different sources of energy
loss for a hot electron propagating in a plasma, together with the
equations governing the process.

A. Energy loss in electron–electron collisions
While propagating in a plasma, a hot electron collides with

other free plasma electrons. Since the two colliding particles have
the same mass, the primary particle may transfer part of its energy
to the plasma electron. This phenomenon is treated in Ref. 54 and

Matter Radiat. Extremes 7, 065902 (2022); doi: 10.1063/5.0103631 7, 065902-5

© Author(s) 2022

https://scitation.org/journal/mre


Matter and
Radiation at Extremes RESEARCH ARTICLE scitation.org/journal/mre

the linear energy loss due to binary electron–electron collisions is
given by the following formula:

dE
dS ee

= 2πr2
0mc2ne

β2

⎡⎢⎢⎢⎢⎣
2 ln Λ + ln

1
4
+ 1 + 1

8
(γ − 1

γ
)

2

− 2γ − 1
γ2 ln 2

⎤⎥⎥⎥⎥⎦
,

(21)

where r0 is the classical electron radius, m is the electron mass, c
is the speed of light, ne is the free electron density of the plasma,
and β and γ are the relativistic kinematic quantities of the incident
electron. ln Λ is the so-called Coulomb logarithm:

ln Λ = ln(max{λD, ri}
λ∗ee

), (22)

where λ∗ee is the de Broglie wavelength in the center of mass, which
is given by

λ∗ee =
h̵

2p∗
= h̵

mc
√

2(γ − 1)
. (23)

If the de Broglie length is smaller than the Landau impact parameter
b0, then quantum effects can be neglected and the plasma becomes
classical.58 The literature then suggests that the following expression
should be used for the Coulomb logarithm:39

ln Λ = ln( max{λD, ri}
max{λ∗ee, b0}

). (24)

B. Energy loss in electron–atom inelastic collisions
An energetic electron that propagates in a medium experiences

collisions with atoms. In particular, the electron may undergo an
inelastic collision and transfer energy to the electronic structure of
an atom. As remarked in Sec. II, these collisions do not influence
strongly the direction of the primary particle, but, conversely, they
play an important role in the electron energy loss. This energy trans-
fer is modeled considering the mean excitation potential I. In the
case of an ionized medium, this can be computed as a function of
the degree of ionization of the atom:40,59

I = aZ
exp[1.294(Z∗/Z)0.72−0.18Z∗/Z]

√
1 − Z∗/Z

. (25)

The constant a is set to ∼10 eV to fit the numerical calculations of
I computed using TF theory.60,61 In the case of a carbon ion, for
Z∗ = 1, I ≃ 95 eV, a value slightly greater than the value of 78 eV
for the nonionized atom.62 This is consistent with the fact that the
values of I for ionized elements are in general greater than those
in the nonionized case. Qualitatively, this happens because the
primary particle interacts with inner atomic electrons, which feel a
greater nuclear Coulomb potential. In the case of cold material (i.e., a
nonionized material at T = 0), the values of I tabulated in the ICRU
report for all elements are implemented in the code.62,63

To calculate the electron stopping power, I is used in the
Bethe–Bloch formula:64

dE
dS ei
= 2πr2

0mc2Zbni

β2

⎧⎪⎪⎨⎪⎪⎩
ln[(E

I
)

2 γ + 1
2
] + 1

γ2

+ 1
8
(γ − 1

γ
)

2

− 2γ − 1
γ2 ln 2

⎫⎪⎪⎬⎪⎪⎭
, (26)

where E is the electron kinetic energy and ni is the atomic density of
species i.

In the case of mixed species, it is assumed that the stopping
power additivity rule is a good approximation. For a medium
containing N species, this rule reads

dE
dS ej
=

N

∑
j
(dE

dS ei
)

j
, (27)

where the sum is over all the species. This can be considered
correct in a plasma, since ions are free and molecular binding
is absent. Some error is, however, introduced in the case of cold
materials, because the molecular bonds should be considered: the
interaction of the energetic electron is no longer with atoms seen as
a single entity, but rather with the entire molecule. Despite this, we
consider the additivity rule sufficiently accurate for our purposes.

C. Energy loss due to plasmon excitation
The formulas given in Secs. V A and V B describe the electron

energy loss due to binary collisions with other free plasma electrons
or with partially ionized atoms (or with nonionized atoms in the
cold case). These interactions are relevant, and the corresponding
formulas are correct, if the electron passes at distances from the
target particle less than the Debye length (or ion sphere radius).
For greater interaction distances, the plasma acts as a continuous
medium in which the charged particles participate in collective
behavior, responding to the electric field generated by the hot
electron.65 In particular, the hot electron loses energy by exciting
plasma oscillations. A nonrelativistic treatment of the phenomenon
is given in Ref. 43, and the stopping power formula that describes
the loss of energy due to plasma wave excitation is

dE
dS ep

= 2πr2
0mc2ne

β2 ln(1.123
βc

ωpmax{λD, ri}
)

2

. (28)

D. Bremsstrahlung emission and Fermi effect
We have not so far mentioned the energy losses due to

bremsstrahlung generation. This effect is important for electron
kinetic energies greater than ∼MeV, and so it can be neglected
in our regime. In particular, the ratio between the collisional and
bremsstrahlung energy losses in cold material is66

(dE/dS)b

(dE/dS)c
∼ TZ

700
, (29)

where T is the electron energy in MeV. Thus, for an electron with an
average kinetic energy of ∼30 keV in CH (Z = 3.5), the collisional

Matter Radiat. Extremes 7, 065902 (2022); doi: 10.1063/5.0103631 7, 065902-6

© Author(s) 2022

https://scitation.org/journal/mre


Matter and
Radiation at Extremes RESEARCH ARTICLE scitation.org/journal/mre

stopping power is four orders of magnitude greater than the
bremsstrahlung stopping power.

Let us also mention that in the cold case, the Fermi density
effect is neglected. This effect reduces the value of the stopping
power because of the atom polarization in the medium43 and it
becomes important for highly energetic electrons (∼MeV).

VI. PROPAGATION ALGORITHM
As mentioned in Sec. I, a mixed simulation algorithm was

chosen to simulate the hot electron propagation. In particular, the
beam diffusion is modeled considering soft and hard collisions with
nuclei and free plasma electrons, while the electron slowing down
is simulated using the formulas presented in Sec. V. The algorithm
is implemented following closely the method used in the Penelope
MC code,17,20 although with some modifications that are required
because of the different nature of the problem. Notably, in addi-
tion to the modifications to the stopping powers and scattering cross
sections, our numerical method differs from Penelope in the
following ways:

● It uses an unstructured tetrahedral grid framework, with
spatial gradients and automatic updating of the stopping
power value Se(E).

● Free path probabilities are modified, taking the inhomo-
geneity of the medium into account.

The steps of the algorithm are as follows:

1. Set the initial position and momentum direction r and p
of the electron.

2. Sample the length of the step up to the next hard collision
using the formula

Δs = −λ(h) ln ξ, (30)

where ξ is a random number between 0 and 1. λ(h) is the mean free
path between hard collisions, and it is computed according to the
following prescription:17

λ(h) = max{λ, Csλ1}, (31)

where λ is the mean free path, given by

λ−1 = 2πN∫
θmax

θmin

dσ(θ)
dΩ

sin θ dθ, (32)

and λ1 is the first transport path (18). It should be noted here that the
upper integration limit in the integral (18) is no longer θs (as it was in
the soft scattering approximation), but has been extended up to θmax,
i.e., all the possible polar directions are considered, depending to the
scattering center (electron or nucleus). In the case of a multispecies
medium, the two quantities are computed according to the additivity
rule (19). Cs is a preselected small constant chosen by the user to
control the computer time needed to simulate the electron history
in a mixed algorithm. Its value should be small, so as to not impact
the simulation results. In Penelope, simulation results are generally
stable under variations of Cs within the interval (0, 0.1). As is done in
the literature, we set Cs = 0.05. This prescription amounts to saying
that the average angular deflection due to all elastic collisions (soft

and hard) occurring along the step equals Cs.53 Detailed information
on this can be found in Refs. 17, 20, 67, and 68.

If λ > Csλ1, then the simulation is detailed and the scattering
phenomena are simulated individually (i.e., a two-body interaction
is simulated). Conversely, if λ < Csλ1, the simulation enters the
mixed mode, and soft and hard scattering phenomena are simulated
separately. In our case, the simulation runs for the most of the
time in mixed mode. Only when the electron has energy around
∼10–20 keV does the detailed algorithm come into play, but, at this
point, the particle will experience only a few collisions before being
completely stopped. The two algorithms proceed as follows.

A. Detailed simulation
3a. If λ > Csλ1, then the simulation becomes a detailed simula-

tion.17 The particle is propagated for a step Δs, and the collision
is simulated. In case of a multispecies material, the probability
of interacting with the ith element is calculated according to
the equation

P(i) = σi

σ tot
= λ−1

i

∑jλ−1
j

, (33)

where the sum is over all the elements j and λj are the mean free
paths taking account of the collisions with the jth element. The
probability for the electron to find the ith species is sampled
according to Eq. (33) using a random number ξ ∈ (0, 1]:

i−1

∑
j=0

P( j) ≤ ξ ≤
i

∑
j=0

P( j). (34)

The collision with the ith component is simulated by sampling
the scattering polar angle from the DCS of the ith element:

p(θ) = cn
dσi(θ)

dΩ
sin θ, (35)

where cn is a normalization coefficient. The azimuthal angle
φ is sampled from a uniform distribution from 0 to 2π. It
should be noted that since the algorithm is running in “detailed
mode,” the separation between hard and soft collisions is not
effective. The sampling of the polar angle is conducted from
0 to π in the case of collisions with nuclei, or from θmin (see
Sec. IV A) to θmax = arcsin

√
2/(γ + 3) in the case of colli-

sions with electrons. θmax is the deflection corresponding to
maximum energy loss, i.e., when the primary electron gives
half of its kinetic energy to a plasma electron.29 In contrast to
the formula (20), Eq. (35) is not multiplied by the Heaviside
function.

B. Mixed simulation
3b. If λ < Csλ1, then the simulation uses the mixed algorithm.17

Soft collisions are treated using the Goudsmit–Saunderson
theory (see Sec. IV A), and hard collisions are simulated indi-
vidually. In particular, the electron first moves for a distance
τ = Δsξ, where ξ is a random number between 0 and 1.
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Here, it experiences an artificial soft collision, and the polar
angle θ that defines the new direction is sampled from
the Goudsmit–Saunderson distribution function FGS(θ, τ)
(17). The azimuthal angle φ is sampled from an uniform
distribution between 0 and 2π.

Second, the electron moves for a distance Δs − τ, where it
will experience a single hard collision with a scattering center.
As before, in the case of a multispecies medium, the probabil-
ity for the electron to collide with the ith element is sampled
according to Eq. (34). After that, the scattering polar angle
θ of the new direction is sampled from the DCS of the ith
scattering center, according to the distribution function (20).
The azimuthal angle φ is sampled from a uniform distribution
between 0 and 2π. Figure 1 shows a schematic representation
the two algortithms: detailed and mixed.

4. The slowing down along the track is calculated considering the
CSDA. Denoting by Se(E) the stopping power, with

Se(E) = (
dE
dS
)

ee
+ (dE

dS
)

ei
+ (dE

dS
)

ep
, (36)

the energy loss along the path Δr is simply Eloss = Se(E)Δr,
provided that Se(E) is constant along Δr. As mentioned in
Sec. I, this MC code will be implemented as a module of
hydrodynamic codes, and electrons move and deposit energy
in a 3D grid. If an electron enters a tetrahedron at the point r0
and propagates along a path with direction p0 for time τ, its
position will be

r(τ) = r0 + p0τ, (37)

as shown in Fig. 2. The energy loss is computed by integrating
the stopping power Se along the path for time τ:

∫
τ

0
dt Se(t) = ∫

τ

0
[Se(r1) + (r(t) − r1) ⋅ ∇Se] dt, (38)

FIG. 1. Schematic representation of the two algorithms: (a) detailed simulation
algorithm; (b) mixed simulation algorithm. In a detailed simulation, each scattering
event is simulated individually in a two-body interaction. In the mixed algorithm,
soft and hard collisions are simulated separately.

FIG. 2. Grid element of the mesh in which the electron propagates. The position
of each node is indicated by the vector ri . r0 indicates the position at which the
particle enters the tetrahedron, while r(τ) is the path traveled by the particle in the
tetrahedron.

where r1 is the position of the first node. The integral is
analytically solvable, and it yields

E loss = Se(r1)τ + [(r0 − r1)τ +
p0τ2

2
] ⋅ ∇Se. (39)

We are assuming here that the gradient is constant in each
tetrahedron.69 It is clear that large grid elements will cause
greater error, while smaller grid elements will allow for a more
precise modeling of the electron transport at the expense of
computational time. In this regard, simulations are gener-
ally stable for tetrahedron lateral dimensions of the order of
micrometers.

5. The process is repeated until the electron kinetic energy
becomes lower than the electronic plasma temperature (i.e.,
the electron is thermalized) or until the electron exits the
computational domain.

Let us mention that according to this algorithm, the history
of each electron is followed individually, and the electrons scatter
and lose energy according to the physical phenomena described in
the preceding sections. It is well known, however, that the propaga-
tion of electrons emitted by laser–plasma interaction can be affected
by the presence of collective effects and self-consistent electric and
magnetic fields. These effects were neglected in previous studies
of hot-electron transport in the fast ignition (FI) context.29,70,71

Furthermore, in Ref. 72, the authors evaluated the importance of the
collective losses on the propagation of hot electrons in the context
of SI, asserting that these are negligible because of the low intensities
of the electron beam. The evaluation of the collective effects and the
impact of the self-generated electromagnetic fields on hot-electron
propagation is an open topic, and it can provide motivation for
future work.

Another aspect that is not simulated by our model is the
generation of secondary electrons. These electrons are generated by
the hard collision of the primary particle with plasma or bound elec-
trons, which become suprathermal. As noted in Paper II,25 hard
collisions should not be neglected, since they strongly modify the
directions of the hot electrons. While the simulation of secondary
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electrons is important in fields in which a high degree of preci-
sion is required (e.g., radiotherapy), given the typical uncertainties
in laser–plasma experiments, their absence should not cause any
great problems. However, the need to understand and evaluate the
effect of secondary electrons again provides motivation for future
investigations.

It is worth mentioning that it is important to be aware of
numerical errors in the code, which need to be minimized. In
particular, the absolute number of particles launched in the
simulation should be sufficiently high to minimize the statistical
fluctuations of the physical quantities considered. Another source
of numerical error is related to the grid element dimension. In
fact, large tetrahedron dimensions will cause erroneous computation
of the electron stopping power. It is therefore necessary to set a
sufficiently fine mesh and a sufficiently high number of particles
to obtain accurate results, even if this causes a degradation in the
performance of the simulation.

C. Calculation of mean free path
in an inhomogeneous medium

This subsection describes an algorithm suitable for calculat-
ing the collision distance Δs of an electron propagating inside an
inhomogeneous medium. In cold MC methods, the collision dis-
tance is sampled from an exponential distribution at the beginning
of the electron history [see Eq. (30)]. However, this procedure is not
adequate for our purposes. In fact, in the case of laser-irradiated
targets in the ICF context, the material density can vary by orders
of magnitude in several tens or hundreds of micrometers. As an
example, Fig. 3 shows the density profile of a planar CH target
irradiated with a laser of intensity 1016 W/cm2, after 500 ps of irradi-
ation. The density goes from 0.05 g/cm3 at x = 0 (coronal plasma) to
4 g/cm3 (shocked region) after 30 μm. An electron initialized at x = 0
will be characterized by a large mean free path λ(E, ρ), since the
material density is very low. Because of this, the electron propagates
for the first 20–30 μm without experiencing any collisions, but at
this point the material density is much higher. The value of λ(E, ρ)
computed at the beginning of the electron history is no longer valid
in this new condition.

An approximate method to compute the collision distance in
a nonhomogeneous medium is presented in Ref. 74. This method

FIG. 3. Density profile of a CH planar target irradiated by a laser at an intensity of
1016 W/cm2. The density profile is extracted from a hydrodynamic simulation using
the CHIC73 code, after 500 ps of irradiation. The laser is coming from the left.

was originally developed for neutral particles, but it is adequate for
our purposes. Let us consider a neutral particle that propagates in
a heterogeneous medium. In our case, this medium is composed of
small volumes, the grid elements, within each of which the material
is homogeneous (see Fig. 4). The collision distance should be recom-
puted at each cell interface, taking into account the path already
traveled and the density variations. If the particle crosses cells 1 and
2, traveling distances l1 and l2, the collision distance in cell 3 can be
sampled according to the following formula:

Δs3 = −λ(h)3 ln ξ − l1
λ(h)1

λ(h)3 − l2
λ(h)2

λ(h)3 , (40)

where ξ is a random number ∈ (0, 1] and λi are the mean free paths
computed in each cell.

If Δs3 < l3, the particle is transported by x = l2 + Δs3 and the col-
lision is simulated. Conversely, if Δs3 > l3, the particle is propagated
up to the boundary of cell 3 and Δs4 is computed by adding the term
−(l3/λ(h)3 )λ

(h)
4 to the right-hand side of Eq. (40) and replacing λ(h)3

by λ(h)4 .
From a practical point of view, the collision distance Δs is

calculated by launching a “fictitious” particle before the real elec-
tron track. These fictitious particles have the same kinetic energy
as the electron and they propagate following straight lines in the
grid, as shown in Fig. 4. Referring to the figure, the particle starts
in tetrahedron 1, where the collision path is computed according to
Eq. (30):

Δs1 = −λ(h)1 ln ξ. (41)

If Δs1 < l1, the real electron is launched and propagated up to
x = Δs1, where it experiences a collision. Conversely, if Δs1 > l1, then
the fictitious particle arrives at the boundary between tetrahedra
1 and 2, and Δs is recalculated using Eq. (40). This process is repeated
i times until Δsi < li. At this point, the collision path is given by

Δs =
i−1

∑
i=0

li + Δsi, (42)

and the real electron track starts. The main approximation intro-
duced using this method is the fact that the fictitious particle does

FIG. 4. Calculation of the collision distance for an electron moving in a computa-
tional domain subdivided into triangular cells. In each cell k, the medium density
is constant and the electron will be characterized by a mean free path λk . The
path traveled by the electron before reaching the boundary of the kth cell is lk . The
paths of the fictitious particle and of the electron are indicated by the red and black
arrows, respectively. The collision point of the two particles is denoted by x.
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not experience soft scattering events. As a consequence of soft
scattering events, the electron does not follow exactly the straight
lines traveled by the fictitious particle. However, since soft scattering
events do not dramatically change the direction of the electron, the
cells that it crosses are close to those crossed by the fictitious parti-
cle. Thus, the material densities seen by the electron are similar to
those seen by the fictitious particle. To speed up the simulation and
to reduce the complexity of the code, one can also neglect the loss of
energy of the fictitious particle while it propagates in the grid. This
will have a second-order effect in the computation of the collision
path.

VII. BENCHMARK AGAINST GEANT4
In this section, we describe a benchmark of our 3D MC code

against Geant4 used with the library Penelope. This was done by
performing simulations in which the same target geometry and
electron beam characteristics were adopted and then comparing the
results from the two codes. In these simulations, we made use of the
“cold model,” i.e., we considered electrons propagating in nonion-
ized materials. We recall that under these conditions, atoms are not
ionized and electrons scatter with nuclei screened by their complete
electronic structure. In this case, the scattering cross sections were
modeled according to the Wentzel model (3), and the NIST stopping
power formulas were used to compute the slowing down. It should
be noted here that Geant4 implements more complex models to
simulate the diffusion and the slowing down of the beam. Moreover,
it simulates the emission of secondary electrons, an aspect com-
pletely neglected in our model. Nevertheless, a comparison between
the two codes is useful to estimate the margin of error introduced by
our model and its reliability.

A first benchmark was conducted by comparing the energy
deposition of electrons in matter. This quantity plays a primary role
in the calculation of shell preheating in the SI scheme, and it is
therefore necessary to assess the reliability of our numerical method.
For this purpose, monochromatic electron beams were injected in
a 200 μm thick 0.4 × 0.4 mm2 slab and the total energy deposit was
computed. Electrons were initialized considering a 100 μm diameter
spot with an initial beam divergence of 22○. The initial beam energy
ranged from 20 to 800 keV, and each run consisted of 10 000
particles. To evaluate the reliability of the model for different atomic
numbers, several materials were considered: beryllium, aluminum,
titanium, copper, tungsten, and gold. We also considered CH, since
this material is relevant to ICF. As an example, the results for the
cases beryllium and gold are shown in Fig. 5.

Overall, for low-Z materials (Be and Al), our model reproduces
the Geant4 energy deposition with an error that is smaller than 10%.
In the cases of Ti and Cu, the discrepancy between the two codes
remains below 20%, while for the highest values of Z (W and Au), the
error does not exceed 50%. The agreement between the two codes
is particularly good for electron energies in the range 40–180 keV,
especially for low-Z materials, where the error is around 1%. The
discrepancies between the two codes at lower energies, especially
for high-Z materials, may be due to the fact that in this regime,
the first Born approximation no longer holds, and therefore the
stopping power formulas and the Wentzel DCS used in our model
are not accurate. Moreover, for higher electron energies (≥600 keV),

FIG. 5. Energy deposition in a 0.4 × 0.4 mm2, 200 μm thick slab as a function of
the initial monochromatic electron beam energy, computed by our model (red dots)
and by Geant4 (orange dots). The simulated slab was composed of (a) beryllium
and (b) gold.

the disagreement between the codes may be due to the fact that our
code does not take account of the bremsstrahlung energy losses, the
Fermi density effect, and the secondary electron emission. These
discrepancies, however, should not represent a significant issue.
First of all, in direct-drive ICF, hot electrons propagate in low-Z
materials (the plastic ablator and DT cryogenic shell). Furthermore,
low-energy electrons (∼10–20 keV) will be suddenly stopped in the
compressed shell and do not represent a preheating concern. Con-
versely, electrons with energy greater than 40 keV can penetrate
deeper in the cryogenic shell, preheating the fuel. The fact that our
model reproduces the Geant4 results in this energy range with an
error around 1% is an important achievement that gives us more
confidence in the reliability of the code.

Special attention was devoted to the benchmark of the code for
CH, because of its relevance to ICF. Figure 6 represents the energy
deposited by monochromatic electron beams in a 0.4 × 0.4 mm2,
200 μm thick CH slab, comparing our model with Geant4. As can
be seen, our code reproduces the Geant4 results with an error that
is smaller than 5%, establishing the accuracy of the additivity rule
in the calculation of the stopping power (27). Furthermore, Fig. 6
shows the energy deposition in the case of CH characterized by a
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FIG. 6. Energy deposition in a 0.4 × 0.4 mm2, 200 μm thick CH slab as a func-
tion of the initial monochromatic electron beam energy, computed by our model
(red dots) and by Geant4 (orange dots). The black crosses indicate the deposited
energy computed by our model, assuming a low degree of ionization of the material
(T = 1 eV).

small degree of ionization (black crosses). In particular, we set the
material temperature at 1 eV, a condition under which each carbon
atom releases one electron (on average). It can be seen that the values
of energy deposition in the ionized case are slightly greater than

in the cold case. This happens, in particular, for the energy range
160–250 keV, in which the discrepancy with the cold case is around
7%–8%. In particular, electrons with energy grater than 150 keV
reach the rear side of the target and escape, whereas in the plasma
case, they are more strongly absorbed. This will be carefully demon-
strated in Paper II.25 However, it can be seen from Fig. 6 that
for a small degree of ionization, the code converges to the cold
limit. A second benchmark was conducted comparing the electron
transport in CH targets. We considered in particular 0.4 × 0.4 mm2

plastic slabs with two different thicknesses: 200 and 275 μm. Elec-
trons were launched inside the target, with a 2D Maxwellian
distribution function with temperature 26 keV. This value was
chosen on the basis of recent experimental findings on hot-electron
characterization in the context of SI.24

The particles were initialized in a 100 μm diameter spot with
an initial beam divergence of ±22○. Electrons were launched at a
distance of 100 μm from the left side of the target, as shown in
Fig. 7(a). As a figure of merit for the benchmark, we compared
the electron energy spectra at the exit from the target. As can be
seen from Figs. 7(b) and 7(c), there is a good agreement between
the two codes in the prediction of the electron spectrum at the exit
from the target. This is a further important validation of our model
with regard to its reliability for the energy range considered. Other
benchmarks are proposed in Paper II,25 in which a more realistic
scenario based on recent experimental results is considered, as well

FIG. 7. (a) Schematic representation of
simulations performed to benchmark our
MC model against Geant4. Electrons
were injected into a 0.4 × 0.4 mm2 CH
slab at 100 μm from the left side. In this
case, the simulated slab was 275 μm
thick. (b) and (c) Electron energy spectra
at the exit from the target for initial target
thicknesses of 200 and 275 μm, respec-
tively, as predicted by Geant4 (orange
curves) and by our model (blue curves).
The input electron distribution function
was a 2D Maxwellian with a temperature
of 26 keV.
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a the limit of small density gradients, to evaluate the reliability of the
algorithm presented in Sec. VI A.

VIII. CONCLUSION
This paper has described the physical basis and the implemen-

tation of a 3D Monte-Carlo code to model hot-electron propagation
in fusion targets, with the aim of future implementation in hydrody-
namic codes. In contrast to the usual MC methods (e.g., Geant4),
this model simulates hot-electron propagation in ionized or
partially ionized targets, taking into account the presence of the
plasma state. Under these conditions, electrons scatter with other
electrons (free or bound) and with nuclei screened by their residual
electronic structure and by other plasma particles. The energy losses
occur in collisions with other electrons, while collisions with plasma
nuclei govern the beam diffusion. These phenomena are modeled
using appropriate DCSs and stopping power formulas. In particular,
an analytical DCS is proposed to model the elastic scattering between
a hot electron and a nucleus screened by its residual electronic
structure and by other plasma charges.

The MC method is developed following the so-called mixed
algorithm approach. Here, electrons propagate for distances greater
than their mean free paths, and the new directions are evaluated
according to multiple-scattering theories. In particular, soft colli-
sions are modeled according to Goudsmit–Saunderson theory, while
hard collisions are simulated on the basis of a two-body interaction.
The electron slowing down and the energy deposition are computed
in the continuous slowing down approximation. An important
difference with the cold MC methods is that electrons propagate
in targets in which strong density gradients are present, and, notably,
ablation and compression waves are generated by the laser inter-
action. Given these considerations, a new algorithm to evaluate
the electron collision distance in inhomogeneous materials is
developed.

The propagation of electrons in cold materials (i.e., nonionized
materials under standard conditions) can also be simulated thanks
to a cold module that uses appropriate stopping power formulas
and cross sections. This module is used to benchmark the algorithm
against Geant4, considering different figures of merit in the compar-
ison. Overall, our model exhibits very good agreement with Geant4
in the description of hot-electron transport and energy deposition in
targets.

Compared with previous plasma MC methods,29 the MC code
presented here enables simulation of the propagation of hot elec-
trons in partially ionized materials. This is particularly useful in
the analysis of laser–plasma experiments in which the interaction
conditions do not allow complete target ionization to be achieved.
Furthermore, an important improvement is the simulation of hard
collisions.

In Paper II,25 we report two numerical investigations per-
formed using the plasma MC developed here, studying how the
presence of plasma affects hot-electron propagation and performing
an initial analysis of the hot-electron-induced preheating in a typical
implosion scheme. In particular, a detailed study is conducted with
the aim of determining the main features that influence hot-electron
propagation in ionized targets (i.e., laser-irradiated targets) and
comparing the results with those in the cold case (i.e., nonionized

materials under standard conditions). Overall, targets in the plasma
state are more effective than cold targets in stopping and absorbing
hot electrons. This is due in part to the fact that the plasma stopping
power is greater than the cold stopping power, and in part to
enhanced beam diffusion on plasma nuclei. In fact, in this regime,
the screening distances in a plasma (the parameter D in Sec. III) are
greater than those in cold materials (the parameter R in Sec. III), and
the range of nuclear potentials is greater in a plasma. It is also shown
in Paper II that the dominant contribution to beam diffusion comes
from the nuclei rather than the free plasma electrons, justifying our
decision to neglect the changes in direction due to collisions with
bound electrons. Furthermore, in Paper II, some simulations are
conducted to understand the importance of hard collisions, which
should not be neglected.

Further investigations will be required to understand the
importance of collective effects and the generation of secondary
electrons. However, the code is ready for implementation in hydro-
dynamic codes, providing a basis for the development of robust SI
implosion schemes. Finally, if bremsstrahlung and Kα generation
can be added, it will then be possible to interpret laser–plasma exper-
iments without relying on cold MC methods. Further benchmarks
and information on the code can be found in Ref. 75.
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